Dynamic measurements of cerebral pentose phosphate pathway activity in vivo using [1,6-13C2,6,6-2H2]glucose and microdialysis.
نویسندگان
چکیده
Cerebral pentose phosphate pathway (PPP) activity has been linked to NADPH-dependent anabolic pathways, turnover of neurotransmitters, and protection from oxidative stress. Research on this potentially important pathway has been hampered, however, because measurement of regional cerebral PPP activity in vivo has not been possible. Our efforts to address this need focused on the use of a novel isotopically substituted glucose molecule, [1,6-13C2,6,6-2H2]glucose, in conjunction with microdialysis techniques, to measure cerebral PPP activity in vivo, in freely moving rats. Metabolism of [1,6-13C2,6,6-2H2]glucose through glycolysis produces [3-13C]lactate and [3-13C,3,3-2H2]lactate, whereas metabolism through the PPP produces [3-13C,3,3-2H2]lactate and unlabeled lactate. The ratios of these lactate isotopomers can be quantified using gas chromatography/mass spectrometry (GC/MS) for calculation of PPP activity, which is reported as the percentage of glucose metabolized to lactate that passed through the PPP. Following addition of [1,6-13C2,6,6-2H2]glucose to the perfusate, labeled lactate was easily detectable in dialysate using GC/MS. Basal forebrain and intracerebral 9L glioma PPP values (mean +/- SD) were 3.5 +/- 0.4 (n = 4) and 6.2 +/- 0.9% (n = 4), respectively. Furthermore, PPP activity could be stimulated in vivo by addition of phenazine methosulfate, an artificial electron acceptor for NADPH, to the perfusion stream. These results show that the activity of the PPP can now be measured dynamically and regionally in the brains of conscious animals in vivo.
منابع مشابه
Light modulation of the activity of carbon metabolism enzymes in the crassulacean Acid metabolism plant kalanchoë.
When intact Kalanchoë plants are illuminated NADP-linked malic dehydrogenase and three enzymes of the reductive pentose phosphate pathway, ribulose-5-phosphate kinase, NADP-linked glyceraldehyde-3-phosphate dehydrogenase, and sedoheptulose-1,7-diphosphate phosphatase, are activated. In crude extracts these enzymes are activated by dithiothreitol treatment. Light or dithiothreitol treatment does...
متن کاملMetabolic loss of deuterium from isotopically labeled glucose.
The isotopically substituted molecule (6-13C, 1, 6, 6-2H3)glucose was evaluated to determine whether metabolic 2H loss would prevent its use in quantitating pentose phosphate pathway (PPP) activity. PPP activity causes the C1 of glucose to be lost as CO2, while C6 can appear in lactate. 2H NMR analysis of the lactate produced from this glucose can distinguish (3-2H)-lactate (from C1 of glucose)...
متن کاملFructose-1,6-bisphosphate has anticonvulsant activity in models of acute seizures in adult rats.
A variety of observations suggest that decreasing glycolysis and increasing levels of reduced glutathione, generated by metabolism of glucose through the pentose phosphate pathway, would have an anticonvulsant effect. Because fructose-1,6-bisphosphate (F1,6BP) shifts the metabolism of glucose from glycolysis to the pentose phosphate pathway, it was hypothesized to have anticonvulsant activity. ...
متن کاملMOLECULAR IDENTIFICATION OF THE MOST PREVALENT MUTATION OF GLUCOSE-6-PHOSPHATE DEHYDROGENASE (G6PD) GENE IN DEFICIENT PATIENTS IN GILAN PROVINCE
Glucose-6-Phosphate Dehydrogenase (G6PD) is a cytosolic enzyme which its main function is to produce NADPH in the red blood cells by controlling the step from Glucose-6-Phosphate to 6-Phospho gluconate in the pentose phosphate pathway. G6PD deficiency is the most common X-chromosome linked hereditary enzymopathy in the world, that result in reduced enzyme activity and more than 125 different mu...
متن کاملAntagonistic effects of hexose 1,6-bisphosphates and fructose 2,6-bisphosphate on the activity of 6-phosphofructokinase purified from honey-bee flight muscle.
6-Phosphofructokinase purified from honey-bee flight muscle is inhibited by ATP and, unusually, by glucose 1,6-bisphosphate and fructose 1,6-bisphosphate. The inhibition by either of the bisphosphates is not relieved by AMP, but is relieved by fructose 6-phosphate and especially by fructose 2,6-bisphosphate. Lack of effect by AMP is consistent with a low activity of adenylate kinase in this mus...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of neurochemistry
دوره 64 3 شماره
صفحات -
تاریخ انتشار 1995